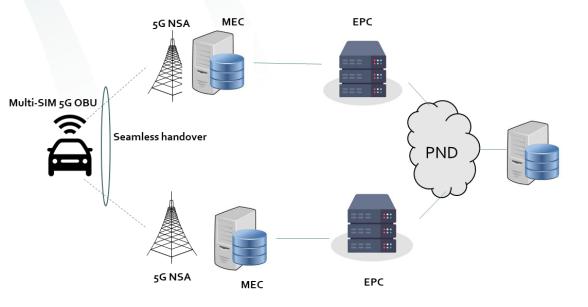
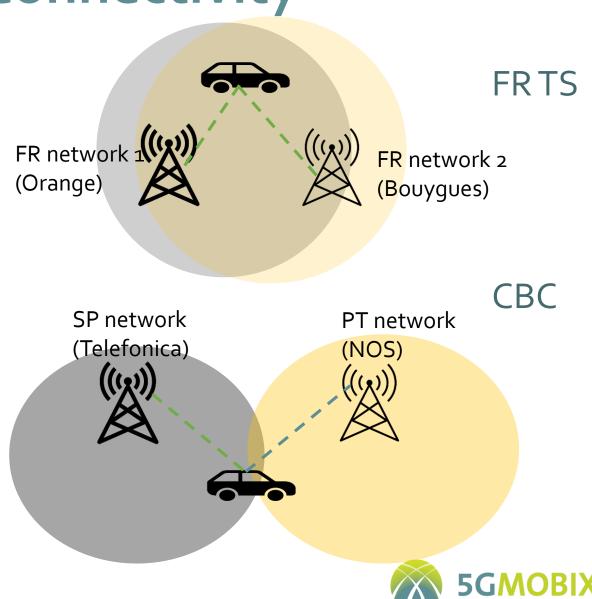
5G-MOBIX French Trial Site's results and lessons learnt on 5G for CAM

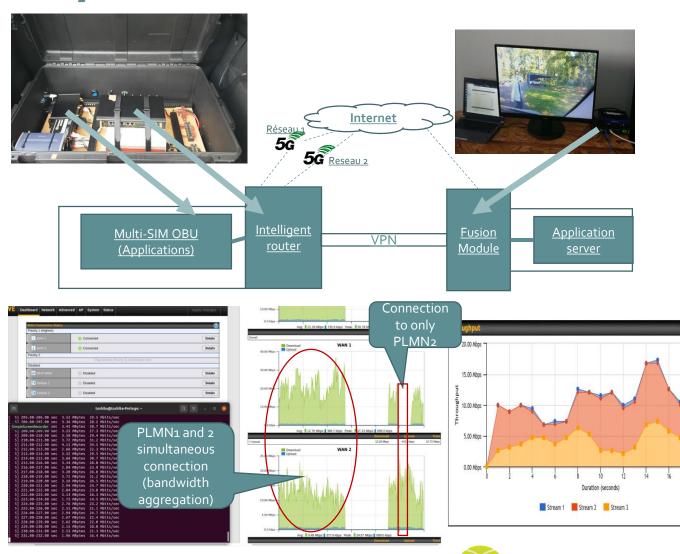
FR Site contributions to the Cross Borders Issues

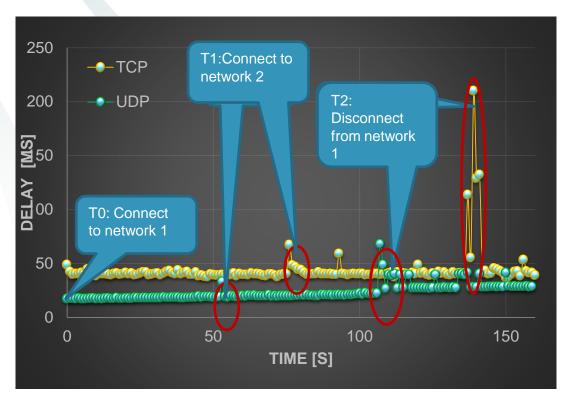
Pierre Merdrignac
20 June 2022


Overview of FR Test Cases


	Category	Cross-Border Issues	Solutions	Tests Cases & Scenarios
		NSA Roaming Interruption	Handover using an NSA network	
	Telecom & Application	Session & Service Continuity	Multi-modem / multi-SIM modem	Single-SIM and Multi-SIM Connectivity with different technologies & networks
		Low Coverage Area	Use of satellite solution	
	Telecom	mmWave Appplicability	mmWave 5G NSA network	User Story: Infrastructure -assisted advanced driving
				4G / 5G sub 6GHz / 5G mmWave
	Application	Dynamic QoS Continuity	Predictive QoS	QoS adaptation to performances changes due to roaming/handover

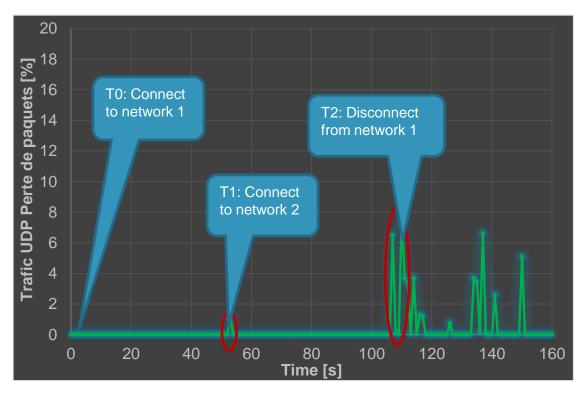
Results of Multi-SIM Connectivity


Scenarios



Multi-SIM Connectivity Solution

- Connected Vehicle with intelligent router
 - Simultaneous connection with two 5G Networks
 - Reduction (suppression) of the delay associated with roaming/handover
 - Aggegration of multiple connexions
 - Increase of throughput
- MEC / Cloud Server
 - Fusion of the received data
 - Reodering of packets send to applications.


Tests in France

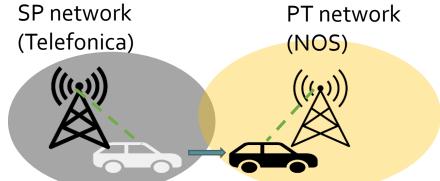
Delay penalty:

- 30 ms for UDP flow
- 150 ms for TCP flow

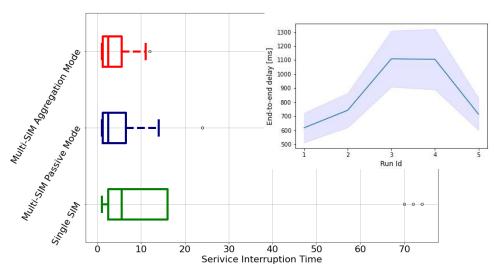
- To: 1st SIM connected to network 1
- T1: 2nd SIM connected to network 2
 - Packets send to both interfaces.
- T2: 1st SIM disconnected to network 1

1% -6% penalty for packet loss

FR-TS Seamless handover test Transmitted video Received video



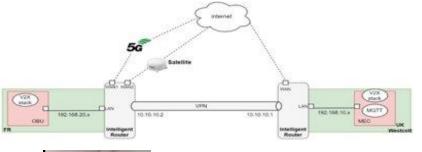
Test in Spain-Portugal Cross-Border SP network (Telefonica)


- CV is installed with an intelligent router which interfaces double SIM 5G OBU: the first SIM from Telefonica, and the second SIM from NOS.
 - CV are sends UDP flows to a server at 10Mbps to a data fusion server installed in France

Results

- Multi-sim connectivity with link aggregation provides the highest performance for service continuity
- Given good network conditions, multi-sim connectivity can ensure service availability
- Important impact related to the location of the monitoring server on the delay

Experimental networks with low coverage at the border



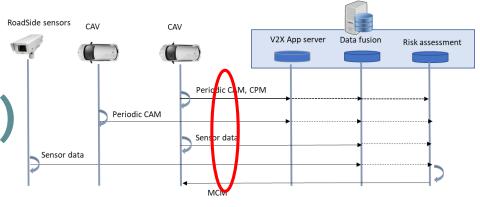
Usage of satellite technology

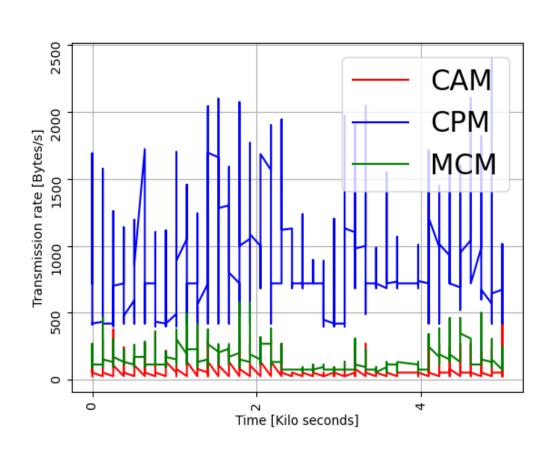
- Iridium Certus LEO Constellation
 - Thales Iridium Certus-350 Land Mobile (up to 500 kbps)
 - Worldwide coverage almost 100 % (inc. Polar regions)
- Vehicle with on-board equipment
 - 5G on-board unit
 - Satellite terminal
 - Intelligent router

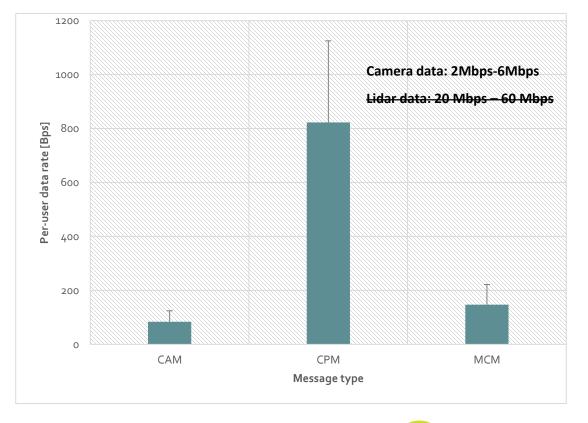
Results

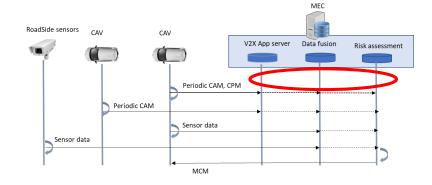
- Satellite communication should be used in a back-up solution when terrestrial 5G technology is not available
- Higher latency (few hundreds ms) and some packets loss have been experienced
- When used with multi-SIM modem, connectivity with VPN server can be maintained

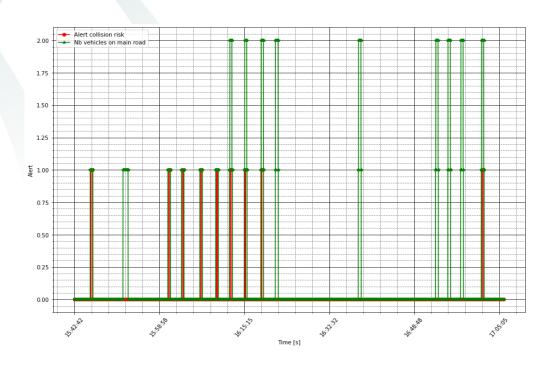
User Story: Infrastructure -assisted advanced driving

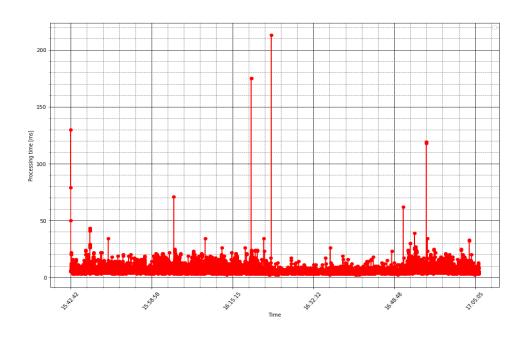

- Scenario
- 1 CAV driving on main road
 - Send CAM / CPM to MEC installed in infrastructure
- 1 Vehicle on insertion lane
 - Detected by roadside sensor
- V2X applications installed in MEC to assist CAV in driving tasks
 - Fusion of data messages and assessment of situation and lane merging
- MEC sends trajectory recommendation to CAV via MCM
 - Indicated lane change when conflicts detected with other vehicle





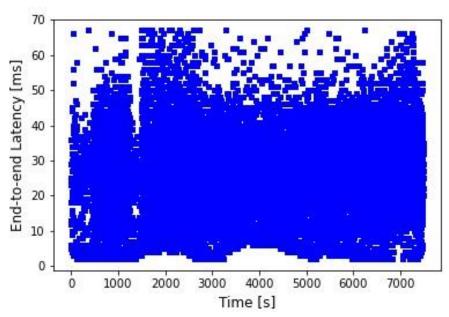

Throughput of V2X Communication (3 vehicles)



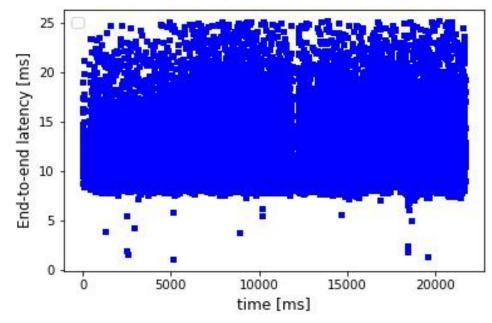


Processing delay in MEC

Monitoring system: extended perception, risk assessment, maneuver coordination



Processing delay on MEC for data fusion and analysis


Performance in end-to-end latency

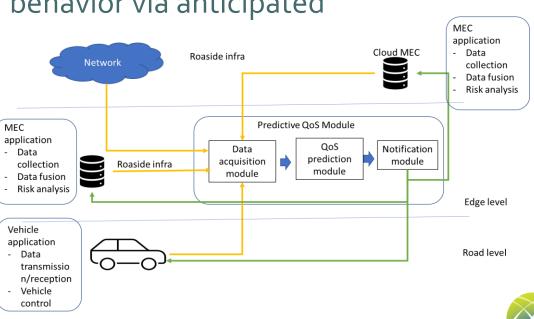
4G Technology

- Average: 29.07 ms
- Median: 28 ms
- Standard Deviation: 9.37 ms

5G Technology (NSA)

- Average: 12.15 ms
- Median : 11.517 ms
- Standard deviation: 2.885 ms

QoS adaptation to performances changes due to roaming/handover


Predictive QoS modules

Installed in MEC at FR TS

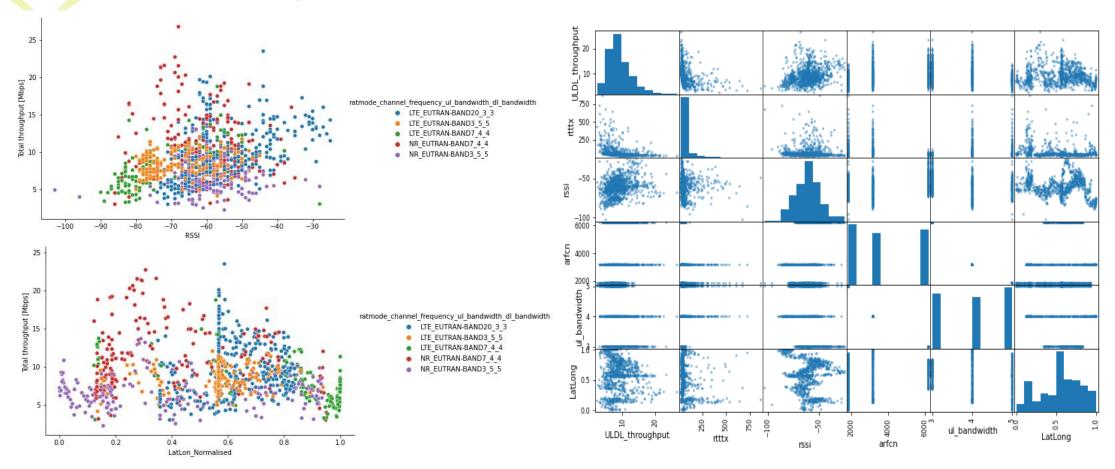
 Predict communication performances based on modeled learned from dataset collected in open road

Request users to adapt their behavior via anticipated

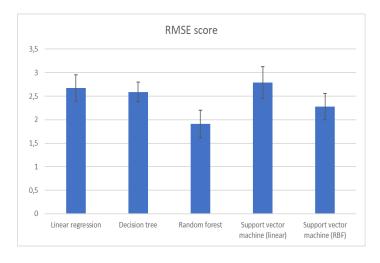
QoS notification (IQN)

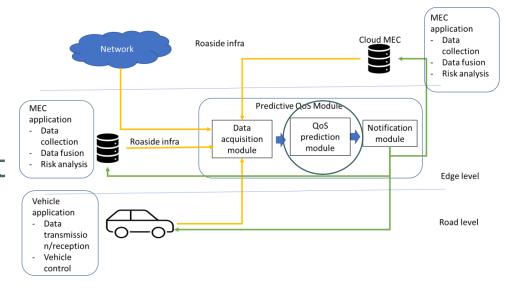
Network notifies CAV about future UL data rate drop

below 20Mbps and its


Data acquisition

- Location
 - Versailles
 - Paris
 - Guyancourt
- Modems
 - SIMCOM OBU 5G
 - Téléphone Samsung S21
- Content
 - Timestamps, location, speed
 - Access, network, application KPIs

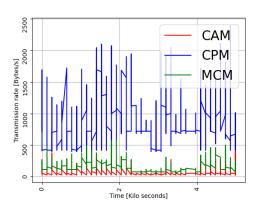

Data analysis

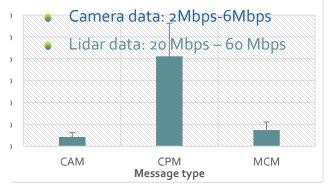

- QoS prediction do not rely on a parametric model with a unique parameter
- Combined impact of multiple parameters need to be conisdered

Model learning

- Multiple supervised learning models used
- Based on RMSE score, random forest provides higher performances
- Fine tuning of model needed

Real throughput [Mbps]	Predicted throughput [Mbp
6,996	6,21526
10,574	9,28
7,48	7,04
13,89	13,06
21,519	17,34




QoS Notification

 Notification of predecited QoS using IQN message specified in FR TS

- What can be controlled?
 - V2X messages: low transmission rate
 - Video: required fine adaptation of transmission parameters

Element	value	Description
Destination Port #	Header	Destination vehicle/end user
Destination Port #		port number
Src Port #		Source Predictive QoS centre
5.6.1.6.1.11		port number
Destination Port #		Destination vehicle/end user II
		add
Src Port #		Source Predictive QoS centre
		IP address
	Payload	
Action ID	INT	0 : unknown
		1 : data rate 2 : speed
		3 : XXX
Action Element	INT	0 : unknown
Action Element	INT	1 : application Id
		2 : vehicle control unit
		3: XXX
Action Value MIN	Min Double	If Action ID= 1 {min data rate
		bps)
		If Action ID = 2 {min speed in
		m/s)
Action value MAX	MAX double	If Action ID= 1 {max data rate
		in bps)
		If Action ID = 2 {max speed in
		m/s) Start time of the action
Action start time Actional end time	time time	End time of the action
Action ID	INT	0 : unknown
ACTION ID	INI	1 : data rate
		2 : speed
		3:XXX
Action Element	INT	0 : uknown
		1 : application ID
		2 : vehicle control unit
		3: XXX
Action Value MIN	Min Double	If Action ID= 1 {min data rate
		bps)
		If Action ID = 2 {min speed in
Action value MAX	MAX double	m/s) If Action ID= 1 {max data rate
Action value IVIAX	IVIAX double	in bps)
		If Action ID = 2 {max speed in
		m/s)
Action start time	time	Start time of the action
Actional end time	time	End time of the action


```
OS Prediction module: timestamp=1050459517, Send ION COmmand to Citent ID: 3001, new data rate: 11.74 mpp:
oS Prediction Module: timestamp=1650459518, Send IQN command to client ID: 3601, new data rate: 11.35 Mbps?
oS Prediction Module: timestamp=1650459519, Send ION command to client ID: 3601, new data rate: 11.61 Mbps
OS Prediction Module: timestamp=1650459520, Send ION command to client ID: 3601, new data rate: 11.44 Mbps:
OS Prediction Module: timestamp=1650459521. Send ION command to client ID: 3601. new data rate: 11.64 Mbps
os Prediction Module: timestamp=1650459522, Send IQN command to client ID: 3601, new data rate: 11.58 Mbps)
OS Prediction Module: timestamp=1650459523. Send ION command to client ID: 3601. new data rate: 11.73 Mbps
oS Prediction Module: timestamp=1650459524, Send ION command to client ID: 3601, new data rate: 11.44 Mbps
os Prediction Module: timestamp=1650459525, Send ION command to client ID: 3601, new data rate: 10.89 Mbps)
OoS Prediction Module: timestamp=1650459526. Send ION command to client ID: 3601. new data rate: 11.64 Mbps
oS Prediction Module: timestamp=1650459527, Send ION command to client ID: 3601, new data rate: 11.15 Mbps
OS Prediction Module: timestamp=1650459528, Send ION command to client ID: 3601, new data rate: 11.87 Mbps:
oS Prediction Module: timestamp=1650459529, Send ION command to client ID: 3601, new data rate: 11.82 Mbps
oS Prediction Module: timestamp=1650459530, Send ION command to client ID: 3601, new data rate: 11.15 Mbps
OS Prediction Module: timestamp=1650459531, Send ION command to client ID: 3601, new data rate: 10.93 Mbps
OoS Prediction Module: timestamp=1650459532, Send ION command to client ID: 3601, new data rate: 11.47 Mbps
OoS Prediction Module: timestamp=1650459533, Send ION command to client ID: 3601, new data rate: 11.45 Mbps
OS Prediction Module: timestamp=1650459534, Send ION command to client ID: 3601, new data rate: 11.65 Mbps
os Prediction Module: timestamp=1650459535, Send IQN command to client ID: 3601, new data rate: 11.53 Mbps)
OS Prediction Module: timestamp=1650459536. Send ION command to client ID: 3601. new data rate: 9.93 Mbps
oS Prediction Module: timestamp=1650459537, Send IQN command to client ID: 3601, new data rate: 11.96 Mbps
oS Prediction Module: timestamp=1650459538, Send IQN command to client ID: 3601, new data rate: 10.7 Mbps)
os Prediction Module: timestamp=1650459539. Send ION command to client ID: 3601. new data rate: 8.56 Mbps?
os Prediction Module: timestamp=1650459540, Send ION command to client ID: 3601, new data rate: 9.35 Mbps)
```

Wireshark I/O Graphs: any 1.2-107 1-107 8-106 4-106

```
DOS Client Module 3601; current position (48.7865, 2.08933), timestamp=1650459486, ION received, data rate adaptation to 10 Mbps
QoS Client Module 3601: current position (48.7865, 2.08945), timestamp=1650459487, IQN received, data rate adaptation to 11 Mbps
OoS Client Module 3601: current position (48.7864, 2.0897), timestamp=1650459488, ION received, data rate adaptation to 11 Mbps
OoS Client Module 3601: current position (48.7864, 2.08983), timestamp=1650459489, IQN received, data rate adaptation to 11 Mbps
DoS Client Module 3601; current position (48,7863, 2,0901), timestamp=1650459490. ION received, data rate adaptation to 9 Mbps
DoS Client Module 3601: current position (48.7863, 2.09037), timestamp=1650459491, ION received, data rate adaptation to 11 Mbps
OoS Client Module 3601: current position (48.7863, 2.0905), timestamp=1650459492, ION received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7862, 2.09077), timestamp=1650459493, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7862, 2.0909), timestamp=1650459494, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7862, 2.09117), timestamp=1650459495, IQN received, data rate adaptation to 10 Mbps
 QoS Client Module 3601: current position (48.7861, 2.0913), timestamp=1650459496, IQN received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7861, 2.09157), timestamp=1650459497, IQN received, data rate adaptation to 10 Mbps
 QoS Client Module 3601: current position (48.7861, 2.0917), timestamp=1650459498, IQN received, data rate adaptation to 11 Mbps
 OS Client Module 3601: current position (48.7861, 2.09197), timestamp=1650459499, IQN received, data rate adaptation to 11 Mbps
 OS Client Module 3601: current position (48.786, 2.09222), timestamp=1650459500, IQN received, data rate adaptation to 11 Mbps
 oS Client Module 3601: current position (48.786, 2.09235), timestamp=1650459501, IQN received, data rate adaptation to 11 Mbps
 os Client Module 3601: current position (48.7859, 2.09262), timestamp=1650459502, IQN received, data rate adaptation to 11 Mbps?
 QoS Client Module 3601: current position (48.7859, 2.09275), timestamp=1650459503, IQN received, data rate adaptation to 10 Mbps
 OoS Client Module 3601: current position (48.7859, 2.09302), timestamp=1650459504, ION received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7859, 2.09315), timestamp=1650459505, IQN received, data rate adaptation to 10 Mbps
 QoS Client Module 3601: current position (48.7872, 2.08703), timestamp=1650459506, IQN received, data rate adaptation to 10 Mbps
 QoS Client Module 3601: current position (48.7871, 2.08712), timestamp=1650459507, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.787, 2.08732), timestamp=1650459508, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7869, 2.08753), timestamp=1650459509, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7869, 2.08765), timestamp=1650459510, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7868, 2.08792), timestamp=1650459512, IQN received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7868, 2.08805), timestamp=1650459512, IQN received, data rate adaptation to 10 Mbps
 oS Client Module 3601: current position (48.7868, 2.08832), timestamp=1650459513, ION received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7867, 2.08845), timestamp=1650459515, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7867, 2.0887), timestamp=1650459515, IQN received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7867, 2.08883), timestamp=1650459517, IQN received, data rate adaptation to 11 Mbps
OoS Client Module 3601: current position (48.7866, 2.08908), timestamp=1650459517, ION received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7865, 2.0892), timestamp=1650459518, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7865, 2.08945), timestamp=1650459519, IQN received, data rate adaptation to 11 Mbps
OoS Client Module 3601: current position (48.7864, 2.0897), timestamp=1650459521, ION received, data rate adaptation to 11 Mbps
OoS Client Module 3601: current position (48.7864, 2.08983), timestamp=1650459521, ION received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7863, 2.0901), timestamp=1650459523, ION received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7863, 2.09023), timestamp=1650459523, IQN received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7863, 2.0905), timestamp=1650459525, IQN received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7863, 2.09063), timestamp=1650459525, IQN received, data rate adaptation to 10 Mbps
 QoS Client Module 3601: current position (48.7862, 2.0909), timestamp=1650459526, IQN received, data rate adaptation to 11 Mbps
 oS Client Module 3601: current position (48.7862, 2.09117), timestamp=1650459527, IQN received, data rate adaptation to 11 Mbps
 os Client Module 3601: current position (48.7861, 2.0913), timestamp=1650459529, IQN received, data rate adaptation to 11 Mbps?
 os Client Module 3601: current position (48.7861, 2.09157), timestamp=1650459529, ION received, data rate adaptation to 11 Mbps
 oS Client Module 3601: current position (48.7861, 2.0917), timestamp=1650459530, IQN received, data rate adaptation to 11 Mbps
 oS Client Module 3601: current position (48.7861, 2.09197), timestamp=1650459532, IQN received, data rate adaptation to 10 Mbps
 os Client Module 3601: current position (48.786, 2.09208), timestamp=1650459532, IQN received, data rate adaptation to 11 Mbps?
 OS Client Module 3601: current position (48.786, 2.09235), timestamp=1650459534, ION received, data rate adaptation to 11 Mbps
 OoS Client Module 3601: current position (48.786, 2.09248), timestamp=1650459534, ION received, data rate adaptation to 11 Mbps
 QoS Client Module 3601: current position (48.7859, 2.09275), timestamp=1650459535, IQN received, data rate adaptation to 11 Mbps
QoS Client Module 3601: current position (48.7859, 2.09302), timestamp=1650459537, IQN received, data rate adaptation to 9 Mbps
QoS Client Module 3601: current position (48.7859, 2.09315), timestamp=1650459537, IQN received, data rate adaptation to 11 Mbps
QOS Client Module 3601: current position (48.7872, 2.08703), timestamp=1650459539, IQN received, data rate adaptation to 10 Mbps
QOS Client Module 3601: current position (48.7871, 2.08712), timestamp=1650459539, IQN received, data rate adaptation to 8 Mbps
QoS Client Module 3601: current position (48.787, 2.08732), timestamp=1650459540, IQN received, data rate adaptation to 9 Mbps
```


Conclusion

Cross-Border Issues	Solutions	Outcomes
NSA Roaming Interruption Session & Service Continuity	Handover using an NSA network Multi-modem / multi- SIM modem	Intelligent combination of multiple technologies can be used to ensure service continuity for vehicle applications
Low Coverage Area	Use of satellite solution	
mmWave Appplicability	mmWave 5G NSA network	5G mmWave has potential be used in dedicated areas to support V2X applications Only initial experimentation could be done
		,
Dynamic QoS Continuity	Predictive QoS	Important to collect data at high resolution with their geolocation Adaptation of application configuration to the radio environment can become possible
	NSA Roaming Interruption Session & Service Continuity Low Coverage Area mmWave Appplicability Dynamic QoS	NSA Roaming Interruption Session & Service Continuity Low Coverage Area Multi-modem / multi- SIM modem Use of satellite solution mmWave 5G NSA network Dynamic QoS Predictive QoS

Thank you

www.5g-mobix.com

