5G-MOBIX German Trial Site Results and Lessons learnt on 5G for CAM

5G for CAM solutions

Adaptive QoS solution for Vehicular Media Communications

Dr. Angel MartinSan Sebastian, 22 June 2022

Agenda

- Motivation
 - CCAM Scenario
 - Issues
- Solution
 - Standards
 - Implementation
- Results
 - Testbed Setup
 - Validation
- Conclusions
 - Existing limitations
 - Future Work

Motivation: Scenario

- Vehicles has lots of sensors.
- Vehicles gets connectivity
- Vehicles can act as external sensors for a wider understanding of the environment [2]
 - New CCAM services and applications
 - Supported by MEC infrastructures for quick handshake of local sessions [4]

Motivation: Issues

- Regulatory
 - Trust
 - MEC handshake and Negotiation
 - Privacy
 - Encryption
- Technical
 - RAN of Cellular Networks are tunned for content consumption
 - Download is faster than Upload
 - QoS is highly dynamic [8]
 - Concurrency
 - Geographical distance from Base Station
 - Peer communications are limited
 - NATs
 - Different domains for each peer
 - MEC accessible from different Networks
 - Quick bootstrapping
 - Session establishment & Handshake
 - Changes IP addresses (roaming)
 - Video encoding setup
 - Buffering & GOP size

Solution: Standards

- WebRTC Video Streaming for Peer Communications
 - Video/Audio + Data Channel SRTP + SCTP
 - QoS Monitored SRTCP https://www.w3.org/TR/webrtc-stats/
 - E2E Encrypted + Handshake DTLS
 - NAT Transversal STUN + ICE
 - Real-time SRTP + UDP
 - Rooms for multicast / multi-party
 - Format Negotiation ICE
- H.264 AVC encoder config for prompt processing
 - Bitrate
 - Framerate & GOP
 - B-frames means reorder
 - Big GOP size means discrete jump in
 - Industry universal HW acceleration and support

Solution: QoS Adaptive Implementation

- 3 Levels
 - Start from worst fidelity
 - Boost Start time
 - Step-by-step
 - Avoid quality leaps
 - Computer Vision
 - Favour Resolution
 - Damage Framerate
 - Keep quick access for GOP
- Parameters
 - Reporting Period
 - Resolution
 - Framerate & GOP size
- Upgrade & Downgrade
 - Mid divider coefficient
 - Poor divider coefficient

Results: Scenarios

Server for handshake No Gateway – Direct communication

Results: Validation

- RTCP Report Period
 - The more frequent the faster reaction (500ms 1s)
- QoS levels (3)
 - Favour quick reaction
 - Avoid ping-pong effects
- Setup comparison
 - Gateways are not transparent adding reaction latencies
- Encoding and Streaming Pipelines do not react immediately
 - ~2s to sense issues from RTCP metrics
 - ~o,7s Receiver Reaction time

Results: Conclusions

- Cellular Networks are not tuned for Vehicular communications of video sensor flows
- Applications need to deal with changeable conditions of wireless networks
- Visibility on networking issues is myopic as far as gateways or network functions come into play
- Canonical MEC brings limitations for multi-carrier sessions
- QoS techniques are crucial for boosting an enforcing live communications

Thank you

www.5g-mobix.com

