5G-MOBIX German Trial Site Results and Lessons learnt on 5G for CAM

Introduction on DE Trial Site

Sebastian Peters, Technische Universität Berlin DE TS Webinar, June 22nd 2022

DE Trial Site description

	DETS							
Partners	artners GT-ARC, TUB, Valeo, Vicomtech							
Location Berlin, open road in urban environment								
Vehicles	3							
OBUs	4x 5G Valeo-Peiker TCU 2.0, 3x Quectel RG500Q-EA 2x Quectel RMU500-EK, 1x Telit Fn980m							
RSI / MEC	9 eRSUs with far edge MEC. PC5 Sidelink RSUs deployed on 2 sites . Near Edge MEC MobiledgeX (Berlin node), research MEC at TUB							
Use cases	 UCC#2/US#2 eRSU-assisted platooning UCC#3/US#2 EDM-enabled extended sensors with surround view generation 							
	convoys							

eRSU-Assisted Platooning

- Form platoon (Joining messages)
- Platoon exchanges PCMs (PC5)
- Connect to O2 Geobroker 1
- Rx EDM messages relevant Areas
- EDM service 1 detects slow vehicle, DENM event received (Uu)

- O2 Area: Establish connection
- XBI9: CS23 and CS24 standard C-ITS messages dissemination via MQTT Geobroker Uu or directly via PC5.
- XBI₅: CS₁₄ information exchange between MECs

- Multi-modem/multi SIM Change to MNO 2

- EDM messages reception briefly interrupted

- Network switch
- XBI5: CS4 Multi-modem multi-SIM solution
- Service interruption due to network switch

- Rx EDM messages relevant areas
- Slow vehicle approaching DENM event received from EDM service 1
- Perform overtake manoeuvre

- DT Area: Application continuity after network switch
- XBI5: CS4 Service continuity thanks multi-modem multi-SIM solution
- XBI5: CS14 inter-MEC exchange. Rx DENM via MQTT from Area1 in Area2

Extended Sensors User Story Overview

- Vehicles connect to closest MEC
- Vehicles send dynamic data to MEC (EDM)
- Data is synchronised between MECs
- Vehicle A queries its EDM to discover a vehicle to get perception
- Vehicle A requests ES session to Vehicle B

- O2 Area: Establish connection
- XBI9: standard C-ITS messages
- XBI5: information exchange between MECs
- XBI10: MQTT Geobroker for message dissemination

- OBU detects border crossing
- Multi-modem/SIM handover to MNO 2
 - Video streaming briefly interrupted

- Network switch
- XBI1: Multi-modem multi-SIM solution
- Service interruption due to network switch

- Affected vehicles connect to MEC of MNO2.
- ES session is recovered: video streaming restarted
- QoS adjusted to MNO2 coverage quality.
- •XBI₅: Service continuity thanks multi-modem multi-SIM solution
- •XBI 8: Dynamic QoS Continuity

5G-MOBIX German Trial Site Results and Lessons learnt on 5G for CAM

5G for CCAM solutionsDual-modem/dual-SIM solution

Sebastian Peters, Technische Universität Berlin DE TS Webinar, June 22nd 2022

5G for CCAM solutions

Dual-modem/dual-SIM solution (10 min) - TUB Sebastian Peters

Adaptive QoS solution (10 min) - VICOM Angel Martin

Dual-modem/dual-SIM solution Overall Concept

- A custom solution to utilize multiple mobile networks has been developed in the DETS based on dual-modem/dual-SIM
- The overall concept is based on implementing a location-based switch of the mobile network from one operator to another

 At specific location X: Perform a switch to another operator as outcome of a decision making component of a prediction function that exploits crowdsourced coverage

maps

 An "In-advance coverage-hole notification" facilitates the proactive creation of a new session over another available mobile network with 5G coverage to minimize mobility interruption time

Dual-modem/dual-SIM solution Scenario

- 2 commercial 5G NSA networks for testing the solution
 - Virtual border at 5G coverage hole to simulate cross-border scenario
 - Each modem has its own MQTT application client associated using the respective mobile network
 - When the location X is reached by the vehicle the application establishes connection via other modem's MQTT client.
- Utilized Hardware
 - 1 x 5G Modem with DT SIM (Vulcano 2.0 TCU)
 - 1 x 5G Modem with O2 SIM (Quectel RM500Q)
 - 1 x Cohda Wireless MK6c
 - 1 x Neousys Nuvo-8108GC as On-Board Unit

Vulcano 2.0 TCU

Cohda Wireless MK6c

Dual-modem/dual-SIM solution Technical Realization

- Python Application utilizing GPS of Cohda box
 - A received location-based trigger causes the change of MNO by calling the Linux network manager commandline client:
 - deactivateO2 = 'nmcli con down \'o2\"
 - activateDT = 'nmcli con up \'DT\''
 - Two potential ways of exploiting the coverage map:
 - Query database for full route ahead and store switching locations locally
 - Subscribe for "In-advance coverage-hole notification"

In-vehicle deployment of dual modem / dual SIM solution

Dual-modem/dual-SIM solution

Coverage Map Approach

Coverage Map Database

	id	signalStrength	networkProvider	cellld	frequency	gpsNmea	
1	6	-122	Telekom	102	6200	\$GPGGA,092855.809,5230.756,N,01319.317,E,1,12,1.0,0.0,M,0.0,M,,63	\$GPGSA,A,
2	7	-96	Telekom	199	6700	\$GPGGA,092855.809,5230.397,N,01320.028,E,1,12,1.0,0.0,M,0.0,M,,6F	\$GPGSA,A
3	8	-141	Telekom	107	6500	\$GPGGA,092855.809,5230.707,N,01318.635,E,1,12,1.0,0.0,M,0.0,M,,63	\$GPGSA,A,
4	9	-104	Telekom	105	7000	\$GPGGA,092855.809,5230.689,N,01318.316,E,1,12,1.0,0.0,M,0.0,M,,60	\$GPGSA,A,
5	10	-35	Telekom	154	6400	\$GPGGA,092855.809,5230.654,N,01317.781,E,1,12,1.0,0.0,M,0.0,M,,65	\$GPGSA,A,
6	11	-96	Telekom	119	6000	\$GPGGA,092855.809,5230.604,N,01316.986,E,1,12,1.0,0.0,M,0.0,M,,68	\$GPGSA,A,
7	12	-108	Telekom	186	6500	\$GPGGA,092855.809,5230.557,N,01316.359,E,1,12,1.0,0.0,M,0.0,M,,65	\$GPGSA,A,
В	13	-77	Telekom	102	6300	\$GPGGA,092855.809,5230.756,N,01319.317,E,1,12,1.0,0.0,M,0.0,M,,63	\$GPGSA,A,
9	14	-91	Telekom	199	6800	\$GPGGA,092855.809,5230.397,N,01320.028,E,1,12,1.0,0.0,M,0.0,M,,6F	\$GPGSA,A,
10	15	-110	Telekom	107	6600	\$GPGGA,092855.809,5230.707,N,01318.635,E,1,12,1.0,0.0,M,0.0,M,,63	\$GPGSA,A,
11	16	-134	Telekom	105	6800	\$GPGGA,092855.809,5230.689,N,01318.316,E,1,12,1.0,0.0,M,0.0,M,,60	\$GPGSA,A,
12	17	-82	Telekom	154	7000	\$GPGGA,092855.809,5230.654,N,01317.781,E,1,12,1.0,0.0,M,0.0,M,,65	\$GPGSA,A,
13	18	-36	Telekom	119	6400	\$GPGGA,092855.809,5230.604,N,01316.986,E,1,12,1.0,0.0,M,0.0,M,.68	\$GPGSA,A,
14	19	-59	Telekom	186	6100	\$GPGGA,092855.809,5230.557,N,01316.359,E,1,12,1.0,0.0,M,0.0,M,,65	\$GPGSA,A,
15	20	-145	02	102	6200	\$GPGGA,092855.809,5230.756,N,01319.317,E,1,12,1.0,0.0,M,0.0,M,.63	\$GPGSA,A,
16	21	-48	02	199	6000	\$GPGGA,092855.809,5230.397,N,01320.028,E,1,12,1.0,0.0,M,0.0,M,,6F	\$GPGSA,A,
17	22	-148	02	107	6600	\$GPGGA.092855.809.5230.707.N.01318.635.E.1.12.1.0.0.0.M.0.0.M63	\$GPGSA.A

Measurement Representation

Coverage Mapper Architecture

Dual-modem/dual-SIM solution Conclusions

- True Dual-SIM Dual-Active functionality in 5G modems will supersede our dual-modem concept, eSIM functionality will enable replacement of conventional SIMs -> Predictive QoS approaches will see a deeper integration on the vehicle V2X application side
- The DETS trials of the custom multi-SIM solution have shown the viability of utilizing the GPS position to implement mobile network switching decisions for V2X applications that can tolerate reconnections
 - In contrast to EDM service more complex stateful-applications require the appropriate handling on the respective network and application layers before breaking the connection

Thank you

www.5g-mobix.com

